energy-py-linear
- combined heat & power (CHP) generators,
- electric vehicle smart charging.
Assets can be optimized to either maximize profit or minimize carbon emissions.
Energy balances are performed on electricity, high & low temperature heat.
Setup
Requires Python 3.10+:
Quick Start
Asset API
The asset API allows optimizing a single asset at once.
We can optimize an electric battery operating in wholesale price arbitrage using epl.Battery
:
import energypylinear as epl
# 2.0 MW, 4.0 MWh battery
asset = epl.battery.Battery(power_mw=2, capacity_mwh=4, efficiency=0.9)
results = asset.optimize(
electricity_prices=[100.0, 50, 200, -100, 0, 200, 100, -100],
freq_mins=60,
initial_charge_mwh=1,
final_charge_mwh=3
)
You can find documentation of how to optimize other assets in how-to/optimize-assets, and Python examples in energy-py-linear/examples/examples.
Site API
The site API allows optimizing multiple assets at once:
import energypylinear as epl
site = epl.Site(assets=[
epl.Battery(power_mw=2.0, capacity_mwh=4.0),
epl.Generator(
electric_power_max_mw=100,
electric_power_min_mw=30,
electric_efficiency_pct=0.4
),
epl.evs.EVs(
chargers_power_mw=[100, 100],
charge_events_capacity_mwh=[50, 100, 30, 40],
charge_events=[
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 1, 1],
[0, 1, 0, 0, 0]
]
=======
A Python library for optimizing energy assets with mixed-integer linear programming:
- electric batteries,
- combined heat & power (CHP) generators,
- electric vehicle smart charging.
Assets can be optimized to either maximize profit or minimize carbon emissions.
Energy balances are performed on electricity, high & low temperature heat.
## Setup
Requires Python 3.10+:
```shell
$ pip install energypylinear
Quick Start
Asset API
The asset API allows optimizing a single asset at once.
We can optimize an electric battery operating in wholesale price arbitrage using epl.Battery
:
import energypylinear as epl
# 2.0 MW, 4.0 MWh battery
asset = epl.battery.Battery(power_mw=2, capacity_mwh=4, efficiency=0.9)
results = asset.optimize(
electricity_prices=[100.0, 50, 200, -100, 0, 200, 100, -100],
freq_mins=60,
initial_charge_mwh=1,
final_charge_mwh=3
)
You can find documentation of how to optimize other assets in how-to/optimize-assets, and Python examples in energy-py-linear/examples/examples.
Site API
The site API allows optimizing multiple assets at once:
import energypylinear as epl
site = epl.Site(assets=[
epl.Battery(power_mw=2.0, capacity_mwh=4.0),
epl.Generator(
electric_power_max_mw=100,
electric_power_min_mw=30,
electric_efficiency_pct=0.4
),
epl.evs.EVs(
chargers_power_mw=[100, 100],
charge_events_capacity_mwh=[50, 100, 30, 40],
charge_events=[
[1, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 1, 1],
[0, 1, 0, 0, 0]
]
)
])
results = site.optimize(
electricity_prices=[100, 50, 200, -100, 0],
high_temperature_load_mwh=[105, 110, 120, 110, 105],
low_temperature_load_mwh=[105, 110, 120, 110, 105],
freq_mins=60,
initial_charge_mwh=1,
final_charge_mwh=3,
)